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1 Weighted Least Squares

When we use ordinary least squares to estimate linear regression, we (naturally)
minimize the mean squared error:

MSE(b) =
1

n

n∑
i=1

(yi − xi·β)2 (1)

The solution is of course

β̂OLS = (xTx)−1xTy (2)

We could instead minimize the weighted mean squared error,

WMSE(b, w1, . . . wn) =
1

n

n∑
i=1

wi(yi − xi·b)2 (3)

This includes ordinary least squares as the special case where all the weights
wi = 1. We can solve it by the same kind of linear algebra we used to solve the
ordinary linear least squares problem. If we write w for the matrix with the wi
on the diagonal and zeroes everywhere else, then

WMSE = n−1(y − xb)Tw(y − xb) (4)

=
1

n

(
yTwy − yTwxb− bTxTwy + bTxTwxb

)
(5)

Differentiating with respect to b, we get as the gradient

∇bWMSE =
2

n

(
−xTwy + xTwxb

)
Setting this to zero at the optimum and solving,

β̂WLS = (xTwx)−1xTwy (6)

But why would we want to minimize Eq. 3?

1. Focusing accuracy. We may care very strongly about predicting the re-
sponse for certain values of the input — ones we expect to see often again,
ones where mistakes are especially costly or embarrassing or painful, etc.
— than others. If we give the points near that region big weights, and
points elsewhere smaller weights, the regression will be pulled towards
matching the data in that region.

2. Discounting imprecision. Ordinary least squares minimizes the squared er-
ror when the variance of the noise terms ε is constant over all observations,
so we’re measuring the regression function with the same precision else-
where. This situation, of constant noise variance, is called homoskedas-
ticity. Often however the magnitude of the noise is not constant, and the
data are heteroskedastic.
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When we have heteroskedasticity, ordinary least squares is no longer the
optimal estimate — we’ll see presently that other estimators can be unbi-
ased and have smaller variance. If however we know the noise variance σ2

i

at each measurement i, and set wi = 1/σ2
i , we get minimize the variance

of estimation.

To say the same thing slightly differently, there’s just no way that we can
estimate the regression function as accurately where the noise is large as
we can where the noise is small. Trying to give equal attention to all
values of X is a waste of time; we should be more concerned about fitting
well where the noise is small, and expect to fit poorly where the noise is
big.

3. Sampling bias. In many situations, our data comes from a survey, and
some members of the population may be more likely to be included in
the sample than others. When this happens, the sample is a biased rep-
resentation of the population. If we want to draw inferences about the
population, it can help to give more weight to the kinds of data points
which we’ve under-sampled, and less to those which were over-sampled.
In fact, typically the weight put on data point i would be inversely pro-
portional to the probability of i being included in the sample (exercise
1). Strictly speaking, if we are willing to believe that linear model is ex-
actly correct, that there are no omitted variables, and that the inclusion
probabilities pi do not vary with yi, then this sort of survey weighting is
redundant (DuMouchel and Duncan, 1983). When those assumptions are
not met — when there’re non-linearities, omitted variables, or “selection
on the dependent variable” — survey weighting is advisable, if we know
the inclusion probabilities fairly well.

The same trick works under the same conditions when we deal with “co-
variate shift”, a change in the distribution of X. If the old probability
density function was p(x) and the new one is q(x), the weight we’d want
to use is wi = q(xi)/p(xi) (Quiñonero-Candela et al., 2009). This can
involve estimating both densities, or their ratio (topics we’ll cover in 402).

4. Doing something else. There are a number of other optimization prob-
lems which can be transformed into, or approximated by, weighted least
squares. The most important of these arises from generalized linear
models, where the mean response is some nonlinear function of a linear
predictor; we will look at them in 402.

In the first case, we decide on the weights to reflect our priorities. In the
third case, the weights come from the optimization problem we’d really rather
be solving. What about the second case, of heteroskedasticity?
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Figure 1: Black line: Linear response function (y = 3 − 2x). Grey curve: standard
deviation as a function of x (σ(x) = 1 + x2/2). (Code deliberately omitted; can you
reproduce this figure?)

2 Heteroskedasticity

Suppose the noise variance is itself variable. For example, Figure 1 shows a
simple linear relationship between the predictors X and the response Y , but
also a nonlinear relationship between X and Var [Y ].

In this particular case, the ordinary least squares estimate of the regression
line is 2.6− 1.59x, with R reporting standard errors in the coefficients of ±0.53
and 0.19, respectively. Those are however calculated under the assumption that
the noise is homoskedastic, which it isn’t. And in fact we can see, pretty much,
that there is heteroskedasticity — if looking at the scatter-plot didn’t convince
us, we could always plot the residuals against x, which we should do anyway.

To see whether that makes a difference, let’s re-do this many times with
different draws from the same model (Figure 4).

Running ols.heterosked.error.stats(100) produces 104 random sam-
ples which all have the same x values as the first one, but different values of
y, generated however from the same model. It then uses those samples to get
the standard error of the ordinary least squares estimates. (Bias remains a
non-issue.) What we find is the standard error of the intercept is only a little
inflated (simulation value of 0.57 versus official value of 0.53), but the standard
error of the slope is much larger than what R reports, 0.42 versus 0.19. Since
the intercept is fixed by the need to make the regression line go through the
center of the data, the real issue here is that our estimate of the slope is much
less precise than ordinary least squares makes it out to be. Our estimate is still
consistent, but not as good as it was when things were homoskedastic. Can we
get back some of that efficiency?
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# Plot the data

plot(x,y)

# Plot the true regression line

abline(a=3,b=-2,col="grey")

# Fit by ordinary least squares

fit.ols = lm(y~x)

# Plot that line

abline(fit.ols,lty="dashed")

Figure 2: Scatter-plot of n = 150 data points from the above model. (Here X is
Gaussian with mean 0 and variance 9.) Grey: True regression line. Dashed: ordinary
least squares regression line.
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par(mfrow=c(1,2))

plot(x,residuals(fit.ols))

plot(x,(residuals(fit.ols))^2)

par(mfrow=c(1,1))

Figure 3: Residuals (left) and squared residuals (right) of the ordinary least squares
regression as a function of x. Note the much greater range of the residuals at large
absolute values of x than towards the center; this changing dispersion is a sign of
heteroskedasticity.
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# Generate more random samples from the same model and the same x values,

# but different y values

# Inputs: number of samples to generate

# Presumes: x exists and is defined outside this function

# Outputs: errors in linear regression estimates

ols.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.ols = lm(y~x)

# Return the errors

return(fit.ols$coefficients - c(3,-2))

}

# Calculate average-case errors in linear regression estimates (SD of

# slope and intercept)

# Inputs: number of samples per replication, number of replications (defaults

# to 10,000)

# Calls: ols.heterosked.example

# Outputs: standard deviation of intercept and slope

ols.heterosked.error.stats = function(n,m=10000) {
ols.errors.raw = t(replicate(m,ols.heterosked.example(n)))

# transpose gives us a matrix with named columns

intercept.sd = sd(ols.errors.raw[,"(Intercept)"])

slope.sd = sd(ols.errors.raw[,"x"])

return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Figure 4: Functions to generate heteroskedastic data and fit OLS regression to it, and
to collect error statistics on the results.
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8 2.1 Weighted Least Squares as a Solution to Heteroskedasticity

Figure 5: Statistician (right) consulting the Oracle of Regression (left) about the
proper weights to use to overcome heteroskedasticity. (Image from http: // en. wikipedia. org/ wiki/ Image:

Pythia1. jpg .)

2.1 Weighted Least Squares as a Solution to Heteroskedas-
ticity

Suppose we visit the Oracle of Regression (Figure 5), who tells us that the
noise has a standard deviation that goes as 1 + x2/2. We can then use this to
improve our regression, by solving the weighted least squares problem rather
than ordinary least squares (Figure 6).

The estimated line is now 2.81−1.88x, with reported standard errors of 0.27
and 0.17. Does this check out with simulation? (Figure 7.)

Unsurprisingly, yes. The standard errors from the simulation are 0.27 for
the intercept and 0.17 for the slope, so R’s internal calculations are working
very well.

Why does putting these weights into WLS improve things?

10:38 Friday 27th November, 2015
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# Plot the data

plot(x,y)

# Plot the true regression line

abline(a=3,b=-2,col="grey")

# Fit by ordinary least squares

fit.ols = lm(y~x)

# Plot that line

abline(fit.ols,lty="dashed")

fit.wls = lm(y~x, weights=1/(1+0.5*x^2))

abline(fit.wls,lty="dotted")

Figure 6: Figure 2, plus the weighted least squares regression line (dotted).
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10 2.1 Weighted Least Squares as a Solution to Heteroskedasticity

### As previous two functions, but with weighted regression

# Generate random sample from model (with fixed x), fit by weighted least

# squares

# Inputs: number of samples

# Presumes: x fixed outside function

# Outputs: errors in parameter estimates

wls.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.wls = lm(y~x,weights=1/(1+0.5*x^2))

# Return the errors

return(fit.wls$coefficients - c(3,-2))

}

# Calculate standard errors in parameter estiamtes over many replications

# Inputs: number of samples per replication, number of replications (defaults

# to 10,000)

# Calls: wls.heterosked.example

# Outputs: standard deviation of estimated intercept and slope

wls.heterosked.error.stats = function(n,m=10000) {
wls.errors.raw = t(replicate(m,wls.heterosked.example(n)))

# transpose gives us a matrix with named columns

intercept.sd = sd(wls.errors.raw[,"(Intercept)"])

slope.sd = sd(wls.errors.raw[,"x"])

return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Figure 7: Linear regression of heteroskedastic data, using weighted least-squared re-
gression.
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11 2.2 Some Explanations for Weighted Least Squares

2.2 Some Explanations for Weighted Least Squares

Qualitatively, the reason WLS with inverse variance weights works is the fol-
lowing. OLS cares equally about the error at each data point.1 Weighted least
squares, naturally enough, tries harder to match observations where the weights
are big, and less hard to match them where the weights are small. But each yi
contains not only the true regression function m(xi) but also some noise εi. The
noise terms have large magnitudes where the variance is large. So we should
want to have small weights where the noise variance is large, because there the
data tends to be far from the true regression. Conversely, we should put big
weights where the noise variance is small, and the data points are close to the
true regression.

The qualitative reasoning in the last paragraph doesn’t explain why the
weights should be inversely proportional to the variances, wi ∝ 1/σ2

i — why
not wi ∝ 1/σi, for instance? Look at the equation for the WLS estimates again:

β̂WLS = (xTwx)−1xTwy (7)

Imagine holding x constant, but repeating the experiment multiple times, so
that we get noisy values of y. In each experiment, Yi = xi·β + εi, where
E [εi|x] = 0 and Var [εi|x] = σ2

i . So

β̂WLS = (xTwx)−1xTwxβ + (xTwx)−1xTwε (8)

= β + (xTwx)−1xTwε (9)

Since E [ε|x] = 0, the WLS estimator is unbiased:

E
[
β̂WLS |x

]
= β (10)

In fact, for the jth coefficient,

β̂j = βj + [(xTwx)−1xTwε]j (11)

= βj +

n∑
i=1

kji(w)εi (12)

where in the last line I have bundled up (xTwx)−1xTw as a matrix k(w), with
the argument to remind us that it depends on the weights. Since the WLS
estimate is unbiased, it’s natural to want it to also have a small variance, and

Var
[
β̂j

]
=

n∑
i=1

kji(w)σ2
i (13)

It can be shown — the result is called the generalized Gauss-Markov the-
orem — that picking weights to minimize the variance in the WLS estimate

1Less anthropomorphically, the objective function in Eq. 1 has the same derivative with
respect to the squared error at each point, ∂MSE

∂e2i
= 1

n
.
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has the unique solution wi = 1/σ2
i . It does not require us to assume the noise

is Gaussian, but the proof does need a few tricks (see §3).
A less general but easier-to-grasp result comes from adding the assumption

that the noise around the regression line is Gaussian — that

Y = β0 + β1X1 + . . .+ βpXp + ε, ε ∼ N (0, σ2
x) (14)

The log-likelihood is then (Exercise 2)

− n

2
ln 2π − 1

2

n∑
i=1

log σ2
i −

1

2

n∑
i=1

(yi − xi·b)2

σ2
i

(15)

If we maximize this with respect to β, everything except the final sum is irrele-
vant, and so we minimize

n∑
i=1

(yi − xi·b)2

σ2
i

(16)

which is just weighted least squares with wi = 1/σ2
i . So, if the probabilistic

assumption holds, WLS is the efficient maximum likelihood estimator.

3 The Gauss-Markov Theorem

We’ve seen that when we do weighted least squares, our estimates of β are linear
in Y, and unbiased (Eq. 10):

β̂WLS = (xTwx)−1xTwy (17)

E
[
β̂WLS

]
= β (18)

What we’d like to show is that using the weights wi = 1/σ2
i is somehow optimal.

Like any optimality result, it is crucial to lay out carefully the range of possible
alternatives, and the criterion by which those alternatives will be compared. The
classical optimality result for estimating linear models is the Gauss-Markov
theorem, which takes the range of possibilities to be linear, unbiased estimators
of β, and the criterion to be variance of the estimator. I will return to both
these choices at the end of this section.

Any linear estimator, say β̃, could be written as

β̃ = qy

where q would be a (p+ 1)× n matrix, in general a function of x, weights, the

phase of the moon, etc. (For OLS, q = (xTx)−1xT .) For β̃ to be an unbiased
estimator, we must have

E [qY|x] = qxβ = β

Since this must hold for all β and all x, we have to have qx = I.2 (Sanity check:
this works for OLS.) The variance is then

Var [qY|x] = qVar [ε|x] qT = qΣq (19)

2This doesn’t mean that q = x−1; x doesn’t have an inverse!
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where I abbreviate the mouthful Var [ε|x] by Σ. We could then try to differen-
tiate this with respect to q, set the derivative to zero, and solve, but this gets
rather messy, since in addition to the complications of matrix calculus, we’d
need to enforce the unbiasedness constraint qx = I somehow.

Instead of the direct approach, we’ll use a classic piece of trickery. Set

k ≡ (xTΣ−1x)−1xTΣ−1

which is the estimating matrix for weighted least squares. Now, whatever q
might be, we can always write

q = k + r (20)

for some matrix r. The unbiasedness constraint on q translates into

rx = 0

because kx = I. Now we substitute Eq. 20 into Eq. 19:

Var
[
β̃
]

= (k + r)Σ(k + r)T (21)

= (k + r)Σ−1(k + r)T (22)

= kΣkT + rΣkT + kΣrT + rΣrT (23)

= (xTΣ−1x)−1xTΣ−1ΣΣ−1x(xTΣ−1x)−1 (24)

+rΣΣ−1x(xTΣ−1x)−1

+(xTΣ−1x)−1xTΣ−1ΣrT

+rΣrT

= (xTΣ−1x)−1xTΣ−1x(xTΣ−1x)−1 (25)

+rx(xTΣ−1x)−1 + (xTΣ−1x)−1xT rT

+rΣrT

= (xTΣ−1x)−1 + rΣrT (26)

where the last step uses the fact that rx = 0 (and so xT rT = 0T ).
Since Σ is a covariance matrix, it’s positive definite, meaning that aΣaT ≥ 0

for any vector a. This applies in particular to the vector ri·, i.e., the ith row of
r. But

Var
[
β̃i

]
= (xTΣ−1x)−1

ii + ri·w0
−1rTi·

which must therefore be strictly larger than (xTΣ−1x)−1
ii , the variance we’d get

from using weighted least squares.
We conclude that WLS, with the weight matrix w equal to the inverse vari-

ance matrix Σ−1, the least variance among all possible linear, unbiased estima-
tors of the regression coefficients.

Notes:
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Figure 8: The Oracle may be out (left), or too creepy to go visit (right). What then?
(Left, the sacred oak of the Oracle of Dodona, copyright 2006 by Flickr user “essayen”,
http: // flickr. com/ photos/ essayen/ 245236125/ ; right, the entrace to the cave of
the Sibyl of Cumæ, copyright 2005 by Flickr user “pverdicchio”, http: // flickr.

com/ photos/ occhio/ 17923096/ . Both used under Creative Commons license.)

1. If all the noise variances are equal, then we’ve proved the optimality of
OLS.

2. The theorem doesn’t rule out linear, biased estimators with smaller vari-
ance. As an example, albeit a trivial one, 0y is linear and has variance 0,
but is (generally) very biased.

3. The theorem also doesn’t rule out non-linear unbiased estimators of smaller
variance. Or indeed non-linear biased estimators of even smaller variance.

4. The proof actually doesn’t require the variance matrix to be diagonal.

4 Finding the Variance and Weights

All of this was possible because the Oracle told us what the variance function
was. What do we do when the Oracle is not available (Figure 8)?

Sometimes we can work things out for ourselves, without needing an oracle.

• We know, empirically, the precision of our measurement of the response
variable — we know how precise our instruments are, or the response is
really an average of several measurements so we can use their standard
deviations, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions
we find should be inversely proportional to the sample size. So we can
make the weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier
to get in the natural or even the social sciences than in many industrial appli-
cations. However, there are approaches for other situations which try to use the

10:38 Friday 27th November, 2015
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15 4.1 Variance Based on Probability Considerations

observed residuals to get estimates of the heteroskedasticity; this is the topic of
the next section.

4.1 Variance Based on Probability Considerations

There are a number of situations where we can reasonably base judgments of
variance, or measurement variance, on elementary probability.

Multiple measurements The easiest case is when our measurements of the
response are actually averages over individual measurements, each with some
variance σ2. If some Yi are based on averaging more individual measurements
than others, there will be heteroskedasticity. The variance of the average of
ni uncorrelated measurements will be σ2/ni, so in this situation we could take
wi ∝ ni.

Binomial counts Suppose our response variable is a count, derived from a
binomial distribution, i.e., Yi ∼ Binom(ni, pi). We would usually model pi as
a function of the predictor variables — at this level of statistical knowledge, a
linear function. This would imply that Yi had expectation nipi, and variance
nipi(1 − pi). We would be well-advised to use this formula for the variance,
rather than pretending that all observations had equal variance.

Proportions based on binomials If our response variable is a proportion
based on a binomial, we’d see an expectation value of pi and a variance of
pi(1−pi)

ni
. Again, this is not equal across different values of ni, or for that matter

different values of pi.

Poisson counts Binomial counts have a hard upper limit, ni; if the upper
limit is immense or even (theoretically) infinite, we may be better off using a
Poisson distribution. In such situations, the mean of the Poisson λi will be a
(possibly-linear) function of the predictors, and the variance will also be equal
to λi.

Other counts The binomial and Poisson distributions rest on independence
across “trials” (whatever those might be). There are a range of discrete proba-
bility models which allow for correlation across trials (leadings to more or less
variance). These may, in particular situations, be more appropriate.

4.1.1 Example: The Economic Mobility Data

The data set on economic mobility we’ve used in a number of assignments
and examples actually contains a bunch of other variables in addition to the
covariates we’ve looked at (short commuting times and latitude and longitude).
While reserving the full data set for later use, let’s look one of the additional
covariates, namely population.

10:38 Friday 27th November, 2015
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To see why this might be relevant, recall that our response variable is the
fraction of children who, in each community, were born into the lowest 20%
of the income distribution during 1980–1982 and nonetheless make it into the
top 20% by age 30, we’re looking at a proportion. Different communities will
have had different numbers of children born in the relevant period, generally
proportional to their total population. Treating the observed fraction for New
York City as being just as far from its expected rate of mobility as that for
Piffleburg, WI is asking for trouble.

Once we have population, there is a very notable pattern: the most extreme
levels of mobility are all for very small communities (Figure 9).

While we do not know the exact number of children for each community, it
is not unreasonable to take that as proportional to the total population. The

binomial standard error in the observed fraction will therefore be ∝
√

pi(1−pi)
ni

.

mobility$MobSE <- with(mobility, sqrt(Mobility*(1-Mobility)/Population))

Let us now plot the rate of economic mobility against the fraction of workers
with short commutes, and decorate it with error bars reflecting these standard
errors (Figure 10).

Now, there are reasons why this is not necessarily the last word on using
weighted least squares here. One is that if we actually believed our model, we

should be using the predicted mobility as the pi in
√

pi(1−pi)
ni

, rather than the

observed mobility. Another is that the binomial model assumes independence
across “trials” (here, children). But, by definition, at most, and at least, 20%
of the population ends up in the top 20% of the income distribution3. It’s fairly
clear, however, that simply ignoring differences in the sizes of communities is
unwise.

3Cf. Gore Vidal: “It is not enough to succeed; others must also fail.”
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mobility <- read.csv("http://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/24--25/mobility2.csv")

plot(Mobility ~ Population, data=mobility, log="x", ylim=c(0,0.5))

Figure 9: Rate of economic mobility plotted against population, with a logarithmic
scale on the latter, horizontal axis. Notice decreasing spread at larger population.
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plot(Mobility ~ Commute, data=mobility,

xlab="Fraction of workers with short commutes",

ylab="Rate of economic mobility", pch=19, cex=0.2)

with(mobility, segments(x0=Commute, y0=Mobility+2*MobSE,

x1=Commute, y1=Mobility-2*MobSE, col="blue"))

mob.lm <- lm(Mobility ~ Commute, data=mobility)

mob.wlm <- lm(Mobility ~ Commute, data=mobility, weight=1/MobSE^2)

abline(mob.lm)

abline(mob.wlm, col="blue")

Figure 10: Mobility versus the fraction of workers with short commute, with ±2
standard deviation error bars (vertical blue bars), and the OLS linear fit (black line) and
weighted least squares (blue line). Note that the error bars for some larger communities
are smaller than the diameter of the dots.
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5 Conditional Variance Function Estimation

Remember that there are two equivalent ways of defining the variance:

Var [X] = E
[
X2
]
− (E [X])

2
= E

[
(X − E [X])2

]
(27)

The latter is more useful for us when it comes to estimating variance functions.
We have already figured out how to estimate means — that’s what all this
previous work on smoothing and regression is for — and the deviation of a
random variable from its mean shows up as a residual.

There are two generic ways to estimate conditional variances, which differ
slightly in how they use non-parametric smoothing. We can call these the
squared residuals method and the log squared residuals method. Here
is how the first one goes.

1. Estimate m(x) with your favorite regression method, getting m̂(x).

2. Construct the squared residuals, ui = (yi − m̂(xi))
2
.

3. Use your favorite non-parametric method to estimate the conditional mean
of the ui, call it q̂(x).

4. Predict the variance using σ̂2
x = q̂(x).

The log-squared residuals method goes very similarly.4

1. Estimate m(x) with your favorite regression method, getting m̂(x).

2. Construct the log squared residuals, zi = log (yi − m̂(xi))
2
.

3. Use your favorite non-parametric method to estimate the conditional mean
of the zi, call it ŝ(x).

4. Predict the variance using σ̂2
x = exp ŝ(x).

The quantity yi − m̂(xi) is the ith residual. If m̂ ≈ m, then the residuals
should have mean zero. Consequently the variance of the residuals (which is
what we want) should equal the expected squared residual. So squaring the
residuals makes sense, and the first method just smoothes these values to get
at their expectations.

What about the second method — why the log? Basically, this is a conve-
nience — squares are necessarily non-negative numbers, but lots of regression
methods don’t easily include constraints like that, and we really don’t want to
predict negative variances.5 Taking the log gives us an unbounded range for the
regression.

4I learned it from Wasserman (2006, pp. 87–88).
5Occasionally people do things like claiming that gene differences explains more than 100%

of the variance in some psychological trait, and so environment and up-bringing contribute
negative variance. Some of them — like Alford et al. (2005) — even say this with a straight
face.
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Strictly speaking, we don’t need to use non-parametric smoothing for either
method. If we had a parametric model for σ2

x, we could just fit the parametric
model to the squared residuals (or their logs). But even if you think you know
what the variance function should look like it, why not check it?

We came to estimating the variance function because of wanting to do
weighted least squares, but these methods can be used more generally. It’s
often important to understand variance in its own right, and this is a general
method for estimating it. Our estimate of the variance function depends on first
having a good estimate of the regression function

5.1 Iterative Refinement of Mean and Variance: An Ex-
ample

The estimate σ̂2
x depends on the initial estimate of the regression function m̂(x).

But, as we saw when we looked at weighted least squares, taking heteroskedas-
ticity into account can change our estimates of the regression function. This
suggests an iterative approach, where we alternate between estimating the re-
gression function and the variance function, using each to improve the other.
That is, we take either method above, and then, once we have estimated the vari-
ance function σ̂2

x, we re-estimate m̂ using weighted least squares, with weights
inversely proportional to our estimated variance. Since this will generally change
our estimated regression, it will change the residuals as well. Once the residu-
als have changed, we should re-estimate the variance function. We keep going
around this cycle until the change in the regression function becomes so small
that we don’t care about further modifications. It’s hard to give a strict guar-
antee, but usually this sort of iterative improvement will converge.

Let’s apply this idea to our example. Figure 3b already plotted the residuals
from OLS. Figure 11 shows those squared residuals again, along with the true
variance function and the estimated variance function.

The OLS estimate of the regression line is not especially good (β̂0 = 2.6

versus β0 = 3, β̂1 = −1.59 versus β1 = −2), so the residuals are systematically
off, but it’s clear from the figure that spline smoothing of the squared residuals
is picking up on the heteroskedasticity, and getting a pretty reasonable picture
of the variance function.

Now we use the estimated variance function to re-estimate the regression
line, with weighted least squares.

fit.wls1 <- lm(y~x,weights=1/exp(var1$y))

coefficients(fit.wls1)

## (Intercept) x

## 2.037829 -1.813567

var2 <- smooth.spline(x=x, y=log(residuals(fit.wls1)^2), cv=TRUE)

The slope has changed substantially, and in the right direction (Figure 12a).
The residuals have also changed (Figure 12b), and the new variance function is
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plot(x,residuals(fit.ols)^2,ylab="squared residuals")

curve((1+x^2/2)^2,col="grey",add=TRUE)

var1 <- smooth.spline(x=x, y=log(residuals(fit.ols)^2), cv=TRUE)

grid.x <- seq(from=min(x),to=max(x),length.out=300)

lines(grid.x, exp(predict(var1,x=grid.x)$y))

Figure 11: Points: actual squared residuals from the OLS line. Grey curve: true
variance function, σ2

x = (1 + x2/2)2. Black curve: spline smoothing of the squared
residuals.
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closer to the truth than the old one.
Since we have a new variance function, we can re-weight the data points and

re-estimate the regression:

fit.wls2 <- lm(y~x,weights=1/exp(var2$y))

coefficients(fit.wls2)

## (Intercept) x

## 2.115729 -1.867144

var3 <- smooth.spline(x=x, y=log(residuals(fit.wls2)^2), cv=TRUE)

Since we know that the true coefficients are 3 and −2, we know that this is
moving in the right direction. If I hadn’t told you what they were, you could
still observe that the difference in coefficients between fit.wls1 and fit.wls2

is smaller than that between fit.ols and fit.wls1, which is a sign that this
is converging.

I will spare you the plot of the new regression and of the new residuals.
When we update a few more times:

fit.wls3 <- lm(y~x,weights=1/exp(var3$y))

coefficients(fit.wls3)

## (Intercept) x

## 2.113376 -1.857256

var4 <- smooth.spline(x=x, y=log(residuals(fit.wls3)^2), cv=TRUE)

fit.wls4 <- lm(y~x,weights=1/exp(var4$y))

coefficients(fit.wls4)

## (Intercept) x

## 2.121188 -1.861435

By now, the coefficients of the regression are changing relatively little, and
we only have 150 data points, so the imprecision from a limited sample surely
swamps the changes we’re making, and we might as well stop.
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fit.wls1 <- lm(y~x,weights=1/exp(var1$y))

par(mfrow=c(1,2))

plot(x,y)

abline(a=3,b=-2,col="grey")

abline(fit.ols,lty="dashed")

abline(fit.wls1,lty="dotted")

plot(x,(residuals(fit.ols))^2,ylab="squared residuals")

points(x,residuals(fit.wls1)^2,pch=15)

lines(grid.x, exp(predict(var1,x=grid.x)$y))

var2 <- smooth.spline(x=x, y=log(residuals(fit.wls1)^2), cv=TRUE)

curve((1+x^2/2)^2,col="grey",add=TRUE)

lines(grid.x, exp(predict(var2,x=grid.x)$y),lty="dotted")

par(mfrow=c(1,1))

Figure 12: Left: As in Figure 2, but with the addition of the weighted least squares
regression line (dotted), using the estimated variance from Figure 11 for weights. Right:
As in Figure 11, but with the addition of the residuals from the WLS regression (black
squares), and the new estimated variance function (dotted curve).
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Manually going back and forth between estimating the regression function
and estimating the variance function is tedious. We could automate it with a
function, which would look something like this:

iterative.wls <- function(x,y,tol=0.01,max.iter=100) {
iteration <- 1

old.coefs <- NA

regression <- lm(y~x)

coefs <- coefficients(regression)

while (is.na(old.coefs) ||

((max(abs(coefs - old.coefs)) > tol) && (iteration < max.iter))) {
variance <- smooth.spline(x=x, y=log(residuals(regression)^2), cv=TRUE)

old.coefs <- coefs

iteration <- iteration+1

regression <- lm(y~x,weights=1/exp(variance$y))

coefs <- coefficients(regression)

}
return(list(regression=regression,variance=variance,iterations=iteration))

}

This starts by doing an unweighted linear regression, and then alternates
between WLS for the getting the regression and spline smoothing for getting
the variance. It stops when no parameter of the regression changes by more
than tol, or when it’s gone around the cycle max.iter times.6 This code is a
bit too inflexible to be really “industrial strength” (what if we wanted to use a
data frame, or a more complex regression formula?), but shows the core idea.

6 Correlated Noise and Generalized Least Squares

Sometimes, we might believe the right model is (in matrix form)

Y = Xβ + ε (28)

E [ε|X] = 0 (29)

Var [ε|X] = Σ (30)

where the matrix Σ is not diagonal. The off-diagonal entries represent covari-
ance in the noise terms, Cov [εi, εj ] = Σij . In fact, we should think this is the
right model more often than the “usual” linear regression model, which is the
special case where Σ = σ2I. There is, after all, no reason in general considera-
tions of probability theory or mathematical modeling to expect that fluctuations
around a linear model will be uncorrelated. How might we nonetheless estimate
β?

One approach is to try to make the noise disappear, by transforming the
variables. Suppose we know Σ. (We’ll come back to where such knowledge

6The condition in the while loop is a bit complicated, to ensure that the loop is executed
at least once. Some languages have an until control structure which would simplify this.
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might come from later.) Because Σ is a variance matrix, we know it is square,
symmetric, and positive-definite. This is enough to guarantee7 that there is
another square matrix, say s, where ssT = Σ, as it were s =

√
Σ. I bring this

fact up because we can use this to make the correlations in the noise go away.
Go back to our model equation, and multiply everything from the left by

s−1.
s−1Y = s−1Xβ + s−1ε

This looks like a linear regression of s−1Y on s−1X, with the same coefficients
β as our original regression. However, we have improved the properties of the
noise. The noise is still zero in expectation,

E
[
s−1ε|X

]
= s−10 = 0

but the covariance has gone away, and all the noise terms have equal variance:

Var
[
s−1ε|x

]
= s−1Var [ε|x] s−T (31)

= s−1Σs−T (32)

= s−1ssT s−T (33)

= I (34)

(This multiplication by s−1 is the equivalent, for random vectors, of dividing a
random variable by its standard deviation, to get something with variance 1.)

To sum up, if we know Σ, we can estimate β by doing an ordinary least
squares regression of s−1Y on s−1X. The estimate is

β̂ = ((s−1x)T s−1x)−1(s−1x)T s−1y (35)

= (xT s−T s−1x)−1xT s−T s−1y (36)

= (xTΣ−1x)−1xTΣ−1y (37)

This looks just like our weighted least squares estimate, only with Σ−1 in
place of w.

6.1 Generalized Least Squares

This resemblance is no mere coincidence. We can write the WLS problem as
that of minimizing (y − xβ)Tw(y − xβ), for a diagonal matrix w. Suppose we
try instead to minimize

(y − xβ)Tw(y − xβ)

for a non-diagonal, but still symmetric and positive-definite, matrix w. This is
called a generalized least squares (GLS) problem. Every single step we went
through before is still valid, because none of it rested on w being diagonal, so

β̂GLS = (xTwx)−1xTwy (38)

7Here’s one way to do it: invoke the “spectral” or “eigendecomposition” theorem, to write
Σ = vλvT , where v is the matrix whose columns are the eigenvectors of Σ, and λ is the
diagonal matrix of the eigenvalues of Σ. Then if we set s = v

√
λ, we’d have Σ = ssT , as

desired.
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What we have just seen is that if we set w = Σ−1, we also get this solution
when we transform the variables so as to de-correlate the noise, and then do
ordinary least squares. This should at least make it plausible that this is a good
way to estimate β in the face of correlated noise.

To go beyond plausibility, refer back to §3. At no point in our reasoning
did we actually rely on Var [ε|x] being diagonal. It follows that if we set w =

Var [ε|x]
−1

, we get the linear, unbiased estimator of minimum variance. If we
believe that the noise is Gaussian, then this is also the maximum likelihood
estimator.

6.2 Where Do the Covariances Come From?

The soundest way to estimate a covariance would be to repeat the experiment
many times, under identical conditions. This corresponds to using repeated
measurements to estimate variances. It’s simple, it works when we can do it,
and there is accordingly little to say about it. Except: there are few situations
where we can do it.

When we wanted to estimate the variance function, we could take all the
squared residuals for values of xi around a given x and use that as an estimate
of σ2(x). This option is not available to us when we are looking at covariances.

If our measurements are spread out over time or space, it’s natural to sup-
pose that there is more covariance between nearby observations than between
remote ones. A stronger but more delicate assumption is that of stationarity,
that the covariance between an observation taken at time 0 and time h is the
same as the covariance between time t and time t + h, whatever t might be.
(And similarly for spatial stationarity.) Call the covariance in at this lag or
separation γ(h). We can estimate it by taking pairs of observations where the
separation is approximately h, and averaging the products of their residuals.

It is common (though perhaps not wise) to make even stronger assumptions,
such as that the covariance decays exponentially with distance, γ(h) = γ(0)ρh or
γ(h) = γ(0)e−h/τ . When we can believe such assumptions, they let us estimate
the parameters of the covariance function using the sample covariances across
all lags. The estimated covariance function, using all of that data, is much more
stable than having many separate sample covariances, one for each lag. Even
if the assumptions are, strictly, false, the stability that comes from forcing all
the covariances to follow a common model can be desirable, on bias-variance
grounds.

7 WLS and GLS vs. Specification Errors

When you find that your residuals from an initial model have non-constant
variance or are correlated with each other, there are (at least) two possible ex-
planations. One is that the fluctuations around the regression line really are
heteroskedastic and/or correlated. In that case, you should try to model that
variance and those correlations, and use WLS or GLS. The other explanation
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is that something is wrong with your model. If there’s an important predictor
variable which is just missing from your model, for example, then its contribu-
tion to the response will be part of your residuals. If that omitted variable is
larger in some parts of the data than in others, or if the omitted variable has
correlations, then that will make your residuals change in magnitude and be
correlated. More subtly, having the wrong functional form for a variable you do
include can produce those effects as well.

8 Exercises

1. Imagine we are trying to estimate the mean value of Y from a large popu-
lation. We observe n members of the population, with individual i being
included in our sample with a probability proportional to πi. Show that
the sample mean n−1

∑n
i=1 yi is not a consistent estimator of E [Y ] unless

all the πi are equal. Show that (
∑n
i=1 yi/πi) /

∑n
i′=1 1/πi′ is a consistent

estimator of E [Y ].

2. Show that the model of Eq. 14 has the log-likelihood given by Eq. 15

3. Do the calculus to verify Eq. 6.

4. Is wi = 1 a necessary as well as a sufficient condition for Eq. 3 and Eq. 1
to have the same minimum?

5. §2.2 showed that WLS gives better parameter estimates than OLS when
there is heteroskedasticity, and we know and use the variance. Modify the
code for to see which one has better generalization error.
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